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0. Introduction

The aim of this paper is to examine the traditional concept of compositionality.
We will be dealing with a language, namely, the language of commands used
in the Unix operating system, the interpretation of which is intuitively far from
compositional, although it fits the traditional definition of compositionality. We
will outline the reason of this discrepancy, then we will show how to modify the
language so that it receives an intuitively compositional interpretation. We show
that this will get us closer to a more reasonable definition of the principle of
compositionality and its significance for the semantics of natural languages.

The paper is organized as follows. In section 1 we present the Principle of
Compositionality and argue that it is to be strengthened, because it is too loose
in its original formulation. In particular, we introduce the Principle of Indepen-
dence, and propose to include it into the Principle of Compositionality. The rest
of the paper discusses a language, namely, the language of commands used in the
Unix operating system, the interpretation of which is far from compositional in
the intuitive sense of the word. However, the traditional Principle of Composi-
tionality does not preclude such an interpretation. First, in section 2, we explain
the concept of shells (command interpreters), and show how the Unix command
language is non-compositional. Then we present an alternative command language
which has a more natural interpretation, based on our version of the concept of
compositionality. Section 3 informally presents the way in which such a ‘com-
positional Unix shell’ should work. Then we develop a language to talk about
the semantic domains relevant to our interpretation, i.e., various components of
a simplified concept of machine states (section 4). Then we explain the concept
of denotational semantics (section 5), a non-procedural view of the interpretation
of computer programs, which underlies the particular structure that we attribute
to our semantic domains (section 6). The actual syntax and semantics of the
language in which we can talk about those objects is given in section 7, and the
description of the semantics of command lines (commands followed by parame-
ters) will be explained in section 8. The way in which we produce those meanings
from those of the command names and the parameters in a compositional way is
explained in section 9. Finally, we offer some conclusions (section 10).

1. Compositionality

Let us first define the concept which will be in the centre of our attention through-
out this paper. The interpretation of a language can be said compositional if and
only if it obeys the Principle of Compositionality, which runs as follows:

1.1. The Principle of Compositionality
The meaning of a complex expression is a function of the meanings of its
constituents and their mode of combination.
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This definition leaves it open whether ‘the meanings of the constituents’ may
depend on each other or on the function that we use to calculate the meaning of
the complex expression. However, it seems that the Principle of Compositionality
would be rather vacuous if we were to allow for such dependencies. That is, we
understand that the intended content of the Principle of Compositionality implies
a Principle of Independence:

1.2. The Principle of Independence
The meanings of the constituents of a complex expression are assigned
independently of each other and the function that yields the meaning of
the complex expression.

The reason why we propose to add this principle is that, as we will see shortly,
languages that obey the Principle of Compositionality may still be rather ‘non-
compositional’ if they fail to satisfy the Principle of Independence. In such lan-
guages, the meaning of an expression may vary depending on what it is a con-
stituent of.  As a result, very similar constructions (e.g., containing the same
expression in the same syntactic role) may be interpreted in heterogeneous (or
even unrelated) ways. We submit that this contradicts the intuition behind the
concept of compositionality.

Note that the interpretation of compositionality proposed here implies that
the meaning contributions of the constituents of an expression are constant, i.e.,
they do not vary from one construction to the other. This means a certain context-
independence as well, which many would deny. We conceive of this as a price to
pay for a reasonable concept of compositionality. In our approach, the context of
utterance (and the utterance-internal context of any sub-expression) can only play
a role inasmuch as both the meanings and the functions that combine them are
underspecified. That is, by virtue of their underspecification, contextual factors
(including the internal context, i.e., the presence of the others) may enrich these
meanings. This kind of mechanism does not contradict the Principle of Indepen-
dence, because it is not the meanings assigned that depend on each other, but
what they become later on.

It is easy to see that the Principle of Independence is not vacuous at all. The
interaction of meanings is by definition contentful, i.e., the Principle of Indepen-
dence prevents meaning assignments from depending on formal properties of the
context (e.g., the shape of a co-occurring constituent). Only genuine homonyms
(homophonous expressions with independent meanings) challenge this principle;
those have to be considered different expressions which accidentally are of the
same shape. So whether an ambiguity is due to an accidental surface coincidence
or a systematic semantic phenomenon must be determined independently.
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2. Unix shells

A shell is a program that establishes contact between the operating system of a
computer and its user. Its task is to forward the user’s commands to the operating
system (after a check of correctness). (A command is also called a command line;
we will refer to it as a cml.) Many shells offer additional features to the user (such
as abbreviatory mechanisms and ways of referring to commands issued earlier),
as well as built-in commands. The shells used with the Unix operating system
(especially the C-shell) offer many such features. The commands that do not
exploit the extra possibilities offered by the shell may contain a command name
(cmy) and various types of parameters that follow it. The command name is simply
the name of a computer program; the program processes the parameters, so their
interpretation is its ‘internal affair’. (Built-in shell commands do not correspond to
programs, the parameters of such commands are processed by the shell itself.) The
language also has certain operators (opr), which can be prefixed to any comand
line. They correspond to programs that run the remaining command line, and
perform some uniform computation in the meantime.!

The informal syntactic and semantic description of command lines is available
in the form of manual pages provided with the operating system. A manual page
contains the summary of the syntax associated with a command name followed by
the description of what the command lines do. Let us take a look at the syntactic
description of the command called grep:

2.1. Example
grep [-bchilnsvy] [-f expfile] [[-e] expression] [files]

First comes the specification of the command name, followed by the list of flags (fl).
In the case of grep, these are one-character strings that can be concatenated in any
order and their concatenation must be preceded by a minus sign. In general, we can
think of a flag as any string containing no blank space and preceded by a minus
sign. (Flags are in principle optional; in manual pages, [-] means optionality.)
Then come two options, each consisting of an option letter and its argument. (An
option letter is like a flag, but it has an argument.) The option letter in the second
option is itself optional. Finally, the last item is an optional argument (opt), i.e.,
a parameter that has a fixed position in the command line which is not preceded
by an option letter. In fact, the above syntactic summary is the abbreviation of
two different syntactic possibilities:

2.1'. Example
a. grep [-bchilnsvy]l [-f expfile] [-e expression] [files]
b. grep [-bchilnsvy]l [-f expfile] [expression] [files]

! For example, the operator time will return the time the process given as its
argument has taken to run.
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In 2.1'a, we have nine flags, two options and an optional argument; in 2.1’b, there
are nine flags, one option and two optional arguments.?

In general, the syntax of the relevant fragment of the language of Unix com-
mand lines (L(°™)) in BNF is as follows:

2.2. Deﬁnitéitf)n
1. eml = opr cml | emg | eml fl | eml opt;

def
2. cmy, = 2 | ... | cmpqy expr | cmg-; opl;

def
3. opt = expr;
4. exprEn | |...|va®|....

¢y, stands for n-argument command name constants, n stands for natural numbers,
and c" stands for a name constant denoting elements of the universe — files,
directories, etc., as we will see. As one can see from the definition, we assume
that flags and options come at the end of command lines rather than between
the command name and its arguments. This modification does not make any
difference except for the fact that the description of the semantics of the relevant
constructions will be far simpler. In what follows, we will not discuss the semantics
of most of the constructs specific for the shell language; we will concentrate on the
semantics of commands.

The language presented above is an idealisation of the currently available
languages, as the construction rules in the given form are context free, whereas
in the actual command language as specified in the manual pages construction
rules are separately given for every command as can be seen from the syntax of
the command grep above. It is obvious that, for example, the syntactic rule that
combines command names with flags is context sensitive in the sense that the
program will report a syntax error if a flag is not explicitly listed in the program
description. On the one hand, it would be desirable to have a context free language
as L(™) and, on the other hand, it is more in line with our intuition that if a
modifier comes from a closed syntactic class, but is not applicable in a certain
context, then this is a semantic, rather than a syntactic phenomenon. It should
be explained in terms of semantic incompatibility or vacuous semantic operations
rather than in syntactic terms. In what follows, we will assume the above language
and let our semantic apparatus be such that it accounts for the problems connected
with the relevant constructions.

There are also more important problems, related to the compositionality of
the interpretation of commands. Besides the fact that command names come

2 The above description is not quite correct, since exactly one of the expfile and
expression arguments is in fact obligatory.
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with some predefined sets of possible parameters (flags and option letters), the
interpretation of these also depends on the command name at hand. For example,
the flag -1 means roughly ‘long, verbose listing’ in connection with the command
name 1s,> whereas as an argument to wc it means something like ‘count lines
only’.* Similarly, while the option letter -f (standing for ‘file’) introduces the
name of an auxiliary file (containing expressions or commands) with grep and
similar commands (make, awk, sed etc.), it is a flag that stands for ‘force’ with the
command rm (remove), and has a totally different effect.®

A second problem is the issue of multiple flags. In general, the order of flags
does not make any difference and multiple occurrences of the same flag in one
command cause the same change in behaviour as single occurrences, as one would
expect. Yet we have to face the problem of dependent flags, i.e., the problem that
certain flags can only appear in the presence of some other flag. For example,
the flag -u depends on the presence of -t in this sense with the command name
1s.° Though even the informal semantics makes this perfectly understandable,
currently this is treated as a syntactic constraint, which again clearly does not
agree with one’s intuition.

As a matter of course, the idiosyncratic behaviour of flags can be explained
away by assuming that flags are functors over command names as arguments.

3 1s -1 lists the files specified by its argument in long format, giving mode,
number of links, owner, group, size in bytes, and time of last mod-
ification for each file. If the file is a symbolic link, the filename is
printed followed by ‘->’ and the pathname of the referenced file. If
the file is a special file, the size field will contain the major and mi-
nor device numbers, rather than a size. A total count of blocks in
the directory, including indirect blocks, is printed at the top of long
format listings.

we counts lines, words and characters in the named files, or in the stan-
dard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newlines. The flags -1, -w and -c may be used in any
combination to specify that a subset of lines, words, and characters
are to be reported.

rm removes each given file. By default, it does not remove directories.
If the -f (‘force’) flag is used, it ignores nonexistent files and does
not prompt the user if the file is unwritable.

6 1s -t sorts the files listed by last modification time (latest first) rather

than by name. .
-u _ uses time of last access instead of time of last modification for sorting;

can only be used with the -t flag.
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Since there is only a finite number of commands, the meaning of a flag could
be a partial function defined pointwise, i.e., one whose action is determined by
first looking at its argument.” A similar issue is raised by the ways in which the
presence vs. absence of options and optional arguments is significant. For example,
if the command set is followed by two arguments (a name and a value), it causes
the variable name to be set to value, whereas if it stands without an argument,
the corresponding action is to display the currently set variables with their values.
This can again be dealt with using several mathematical tricks such as polymorphic
functions or empty strings as arguments, defining the function again pointwise.

Obviously, under the current wording of the Principle of Compositionality, a
compositional interpretation of Unix commands can be given that uses only func-
tional application,® although we have the very strong feeling that, under a more
appropriate view of compositionality, this should not be possible. In particular,
the heterogeneous interpretation of flags (and other option letters) as well as the
heterogeneous behaviour of absent optional arguments are incompatible with our
Principle of Independence. In what follows, we will specify a semantics that we
feel comes closer to the original idea behind compositionality and that will remedy
some of the problems mentioned above. We will see that this type of interpretation
will satisfy the Principle of Independence.

3. Compositional Unix: An Informal Outline

Anomalies like the homonymy of the -f flag mentioned earlier should not occur
in a Unix shell with compositional semantics (and they occur to a very limited
extent in natural languages). In a compositional Unix shell, there must be a flag
-=force to be used with rm (and similar commands)®, and a different flag --file
to be used with grep (and similar commands). (Needless to say, what name we
choose for these flags is immaterial.) The meanings of =~force and --file must

" This method would give us a function that is as good as any other mathe-
matically. Even if we assume that the number of commands is infinite and
that the function is totally defined, we just have to define the result of the
application of a flag to some command for which it is undefined as the action
of issuing some error message — again an action that makes exactly as much
sense as any other from the mathematical point of view.

For example, the meaning of a flagged command is the action it performs.
Compositionality in the above sense is not even destroyed by the fact that the
flag as a function does not necessarily preserve anything of the original action
performed by its argument.

As it is conventional, we will use -- instead of - to indicate that something is
a multiletter flag rather than the concatenation of independent flags.
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be assigned uniformly and independently of the context. For example, =-force
could be interpreted as ‘overwrite the file argument if you own the file, even if you
do not have write permission for it’. (Eventually, it can also cover ‘do not check
if the file argument exists at all’, although it would be cleaner to separate these
two meanings, so that the latter is to be expressed by, say, --ignore.) Similarly,
the interpretation of the option letter ~-file would be interpreted as ‘the name
of an auxiliary file (containing commands ete.) follows’.

Assuming that the programs corresponding to rm, grep etc. operate as they
usually do in Unix (i.e., that we are not to rewrite them), the shell will interpret
these program names independently of their original interpretation (or relying on
the original interpretation if needed). To achieve this, we will assume that the shell
maintains a lexicon which contains a program specification for each possible com-
mand name. Program specifications contain variables corresponding to the possi-
ble effects of parameters. For example, the value of the variable WRITECHECK
determines whether write permission is to be checked before overwriting a file; the
variable EXISTCHECK determines whether the non-existence of a file will trig-
ger a special action; and the value of AUXFILE stores the name of the auxiliary
(command) file. If necessary, program specifications assign default values to such
variables, which can be overridden by parameters.

The procedure described above corresponds to a certain underspecification of
the actual effect of running the programs. The program specifications will ensure
that the external context (the so-called environment, a set of variable bindings)
and the (obligatory and optional) parameters together specify the exact action to
take when invoking a program.

4. Machine States

To give a semantics for the language of Unix commands, we assume that the
relevant basic domain is that of machine states (MS). For the sake of simplicity,
we will represent a machine state with the disjoint union of a typed directed

acyclic graph (TDAG), standing for the directory structure and the files stored,

and a domain NC | Bbing @ Char”* for the denotation of the natural numbers

and character strings,'® forming the universe of interpretation, an interpretation
function and a valuation corresponding to the environment. In this section we
will mainly be concerned with the graphs belonging to a machine state, the other
tree components will be explained in detail in section 7. A typed directed acyclic
graph is defined as follows:

0 The exact meaning of the above notation will be defined later, cf. defini-
tion 5.4.
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4. Machine States

4.1. Definition

1.
o

Given strings v and u, v is a prefix of u 4 Jw.u = vw.
A tree domain D is a non-empty subset of strings (tree addresses) in N*
such that:
a. for each u € D, every prefix of u is also in D;
b. for each u € D, for every 1 € N* if us € D then, for every j such that
1<j<1i,ujisalsoin D.

Two tree addresses are independent if neither is a prefix of the other.
A tree address u is terminal % there is no tree address v in D such that
u is a prefix of v.
Given a set T of types and & = (), Z; of labels, a typed tree is a total
function ¢t : D — X, where D is a tree domain.
A typed directed acyclic graph is an ordered pair (t1, R), where t7 is a
typed tree and R is an equivalence relation on D (dom(t7)) such that
for all u,v € dom(¢r), if (u,v) € R, then:
a. ut € dom(tr) & vi € dom(tr);
b. ui € dom(tr) = (uz,vi) € R;

_c. tr(u) = tT(‘U).

Not all TDAG’s are acceptable in machine states. In our case, the TDAG
associated with NC, , an interpretation function and a valuation has some further
special properties, as shown by the following definition.!! We suppose that T =
{dir, file, Char"}, i.e., the relevant types are directory, file and character string.

4.2. Definition "
(tdag ® NC, p,v) € MS & tdag = (tr, R) is a TDAG, and

N =

PR w

. p:Con - dom(tr) @ NC

v: Var = dom(t7) ® NC .

tT(u) € XTair => Vi € N.tT(ui) € Tair V ir(ui) € Lgye;

tT(u) € Zle = tT(ul) € Zchar A~3i € N\ {1}.11.1' € dom(tp);

tr(u) € Echars = =3 € N.ui € dom(ir);

tT(O) € Zdir;

1,11,111 € dOIIl(tT), tr(l) € gir, tr(11) € Zge, tT(lll) € XChar*, and
—~3i € N.1: € dom(t7) V 11: € dom(ir) V 1i € dom(ir).

The above definitions formulate the following constraints on what ordered
triples of universe, interpretation function and valuation we accept as machine

11 The identity of the labels does not play any role in what follows. @ in clauses
1 and 2 means roughly the disjoint union of the two domains. Although the
domain consists of the disjoint union of a TDAG and NC,, we are only
interested in the disjoint union taken with the domain of the TDAG, as the
subsequent clauses show. For the exact definition, see definition 5.4.
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states proper. The interpretation and the valuation associated with the universe
are functions that assign either a numerical value, a character string or a tree ad-
dress to a constant or a variable of the language to be given in section 7 , depending
on its type, as we shall see. Furthermore, in an MS labels associated with the ter-
minal addresses of the underlying tree have to be of type ‘dir’ or ‘Char*’,!2 ie.,
empty directories or finite lists of characters corresponding to contents of files.!3
We have to impose some further constraints guaranteeing that character strings
are only immediately prefixed'* by files and the latter are immediately prefixed
by directories and that files only immediately prefix one character string which
immediately prefixes nothing. As the sorts form domains of their own, addition-
ally, t7 has to contain three special elements: Lcpace, Lje and 1 4ir — their tree
addresses are 1, 11 and 111, respectively —, neither being the prefix of any other
tree address. These will serve as the so-called bottom elements of their respective
domains — as required by domain theory (cf. sections 5-6), but they will also be
put to special use in our semantics, as will be explained later on.

We will provide the compositional Unix command language with a so-called
denotational semantics. This makes it necessary to introduce some concepts before
specifying what the domains of the semantic values of the various expressions in
our language will be.

5. Denotational Semantics

We will use denotational semantics — as worked out and described in Scott and
Strachey (1971) — for the description of the relevant fragment of a Unix command
language. To illustrate the basic points, let us take a look at the following two
programs:

5.1. Example
F(n) < If n =0 then n else F(n — 1)
G(n) <0

Obviously, the two programs do quite different things. The program F — on
receiving an argument n of type N — will recursively compute a value, namely the
value 0. Program G, on the other hand, will immediately produce the same result.
Although we see that the two programs produce the same output on appropriate

2 We will use the terms file, directory and character string to refer to tree
addresses labelled with objects of the appropriate type.

13 As costumary, we think of empty files as containing the empty string of char-
acters, i.e., the string of length 0.

1 Let u,v € N*. v is an immediate prefix of u & 3 € N.u = vi.



10 5. Denotational Semantics

input, i.e., they are equivalent under the standard set theoretic interpretation of
functions, computationally they are as different as any two programs can be.!®> The
idea behind denotational semantics is exactly this: for many purposes it is better
if we can abstract away from accidental properties of programming languages and
the realizations of specific programs, so that we can regard programs essentially as
realizations of some (set theoretic) functions on domains appropriate for whatever
can serve as the input and the output in the language under investigation.

But things are more complicated than they seem at first sight. If we interpret
the functions to be of type f:IN — N, we have no problems. But what happens if
we let their type be f: Z + Z? The program G will still produce 0 on every input.
But F is in trouble as when it is given some n < 0 as an argument, it will go
straight into an infinite loop. Why is that a problem for our semantics? Because
we have to do something about the infinite loop, and the semantics that we chose
forces us to give a denotation to this result — a denotation that can appear as
values of functions. Additionally, it has to be of type Z to meet the constraints.
For this purpose we introduce a special constant in every domain, called bottom

(L).

Furthermore, we will need an ordering which roughly mirrors the relations
of information content of the elements of the domain. This gives us an algebraic
structure called a Scott domain. The official definition of Scott domains is as

follows:16 )

5.2. Definition

d = (U, Lsq,C) € SD %f}f U#0,L € U,Cacpo,and Vr € U.Lgg C z.

Examples are the domains N; and T, i.e., the domains of natural numbers and
truth values with their respective bottom elements. These domains are also exam-
ples of another important notion, the so-called flat domains, defined as follows:

15 In what follows, we will use the terms extensional equivalence vs. intensional
equivalence: F' and G are extensionally, but not intensionally, equivalent.

16 U is the universe of the domain containing at least 1.4, the information

content of which is minimal according to the complete partial ordering C. A
cpo is a po which has limits | | z, for all (countable) increasing sequences
ro Ez; E ... E 2, C.... Certain further conditions on domains are imposed
in Gunter and Scott (1990), but these need not concern us here, as they are
meant primarily to ensure that the class of domains are closed under various
constructions.
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5.3. Definition
sd€ FDE Ve,y €Uz # Lag Ay # Lea = 2 L .

It is obvious that if we take the ordering to be about the information content
of the elements of the respective domains, then neither L C T, nor T C 1,
i.e., neither truth value carries more information than the other, whereas lack of
information about a truth value certainly carries less information then they do
and, similarly, no natural number is less informative than any other, except for
the bottom element representing the ‘result’ of non-terminating computations.

If we take some previously given domains as basic, all other domains can be
defined using certain operations on domains. These other domains include function
domains, product domains and sum domains. Some of the relevant operations are

defined below:!?

5.4. Definition
e d; — dy the domain of all functions from d; into d;, where

f Carsd, 9 € V2 € d1.f(2) Ty, g(2).

Thus L4, 4, is the function that maps every element of d; into
Ld,;
o d; xd, the Cartesian product domain where

def , ,.
(z1,22) Ca,xd, (y1,92) & Vi € {1,2}.2; Cq, yi;

e dy ©d; the ‘coalesced’ sum, where elements originating from different
di’s are incomparable and both 14, are identified with 14, gd,;

oed; the lifted domain obtained by adding a new bottom element
under d;
od* the lists of finite length — including strings of length 0 — with

non-1 components in d.

There are two more notions that are important in the theory of domains as

'7 dy,dy denote arbitrary domains. The standard function space is the space of
continuous functions. Continuous functions are defined as follows: A function
f is continuous iff

f(l—lxn) = Uf(mn)-

This notion is important from a technical point of view, as there are non-trivial
domains (the so called reflexive domains) which satisfy the following equation:
d = d — d and can serve as the denotation of some special constructs, but
this will not concern us further in the paper.
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well as in what will follow:

5.5. Definition .
1. A function f is monotone & z Cy = f(z) C f(y)-

2. A function f is strict & f(L)= L.

These properties are defined for functions on domains but there is a very intuitive
analogy with computer programs. The first property is one we generally expect
computer programs to satisfy, namely that they respect the richness of the input,'®
i.e., an input that is richer — according to some obvious ordering — is never
taken into an output that is poorer than the output for some poorer input. The
second property is less obvious, but for programs it means that we cannot design a
program that saves us if it is given some erronous input, e.g., if its input is provided
by the output of some program that does not terminate — as would be the case
if we gave the output of program F in 5.1 on input —7 as the input to itself'?. If
we give the above output as an input to the program G in 5.1, then its behaviour
depends on whether we suppose it to operate call-by-value or call-by-name. In the
former case, we get the same result as above; in the latter, we get a program that
is monotone but not strict, since it assigns the same value to every input — thus
satisfying the condition of monotonicity —, but it does not respect the bottom
element. Similarly, it is easy to define a numerical program that is strict but not
monotone — take one that takes every natural number except L into some n € N
but it takes some k¥ € N into n — 1 (and L into L). Thus we see that the two
properties are independent.

One more remark has to be made at this point. We said before that deno-
tational semantics is used so that we can abstract away from certain accidental
properties of programs, i.e., we can see extensionally equivalent programs as hav-
ing the same denotation. This will pose the problem that certain programs of
the Unix command language are extensionally equivalent, but they have different
side effects that we may be interested in capturing. For example, a program that
simply displays the content of a file does not affect the machine state in any ob-
vious way. So we can either take the decision to drop denotational semantics as
our tool or we can simply not take account of these features of programs. But
we can also try to mirror certain intensional differences — i.e., differences due to
the implementation of programs that do not show under the set theoretical repre-
sentation but which we consider relevant — as extensional ones, thus sticking to
denotational semantics. In what follows, we take the latter path.

18 Tn our case, inputs and outputs will be machine states.

19 Tn our case this means that we can never recover from the error state.
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6. The Semantic Domains

To make MS into a Scott domain, we need a bottom element 1wMms and a cpo. The
former is the unstructured error state (Lys); the latter is defined as follows:

6.1. Deﬁnitio{n
L vi S vy € Va(vi(2) = L Ava(z) # L)V (v1(2) = vy(2));
def
2. ms; Cys msy &
ms; = lpys V
ms; = (tda’g;‘ (o] NCJ_,,O;‘,U;‘) (fOI’ i e 2) A tdagl = tdagz A P1 = P2 A v S
V2.

That is, the error state is less ‘informative’ than any other state, and whereas all
other states with different underlying trees or interpretation functions are incom-
parable, in comparable states the ordering is simply inherited from the ordering
on the valuation, which says that a valuation is more informative than another if
and only if it is ‘defined’ in some sense for more values.2°

Now we are ready to define the semantic domains for the language of our Unix
shell:?!

. Definition

[n] € Ny;

[c] € dom(tr);

[var] € dom(tr) ® Ny;

[cm,] €U, — ... 5 Uy - MS - MS;

[opt] € (MS — MS) - MS — MS;

[A] € (MS — MS) = MS — MS;

[opl] € (Up = ... = U; = MS = MS) - U,4, —...—=U; = MS - MS;
[cmi] € MS — MS;

[opr] € (MS — MS) - MS — MS.

P
o

0 00 O CRLab 00,4

There is little to say about the domain of integers; constants will evaluate to dis-
tinguished nodes of the tree, variables to nodes or natural numbers in accordance
with their types. Command lines (commands) will be interpreted as functions
from machine states to machine states, whereas n-argument command names yield
commands when supplied with the appropriate number of arguments. Options and

%0 This is justified by the fact that the relevant information is basically stored
in the valuation function, whereas the underlying tree and the interpretation
function carry little information.

2! Cf. definition 2.2. Furthermore, we use the convention that bracketing is right
associative. For example, X -+ Y — Z =(X - (Y > 2)).
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flags, like operators, are functions from commands to commands; nevertheless, we
shall see that there is a difference between operators and options/flags. Option
letters create new argument places. By the definition of the domains resulting
from coalesced sum, Cartesian product and function formation??, and the flatness
of NC,, T, and dom(tr), the ordering relations and the bottom elements are
given. For example, the least ‘informative’ program (Lms—ms) is the one that
takes every machine state into the error state.

The interpretation of the expressions of the language L{(°™) will proceed via a
translation function into the language of specifications — the topic of the following
section. That is, command lines will be translated into the specification language
first, then that language will be interpreted using the semantic domains defined
here.

7. A Language for Program Specifications

As we have said above, complex expressions will receive a denotation in two steps.
First we define a translation function 7: L{<™) 3 L(sPe) je  we translate ex-
pressions of the shell language into expressions of the language of specifications.
These expressions will be given a denotation via an interpretation function and
a valuation. As we shall see, these will be the desired denotations of the shell
expressions. We will proceed in two steps. We first specify an auxiliary language
L(P*) and a function 7y: L(°™) s L(P*) which will serve as the basis for specifying
the language L(P*) and the function .

Commands (cml) will be translated into program specifications (PS), which
can be interpreted directly in the semantics. The translations of all other expres-
sions (such as flags and option letters) will be given relative to PS. First of all we
need a typed dynamic first-order language with equality (TDFOLE)?® that will
be sufficient to specify — i.e., to describe — functions from machine states to
machine states. The set of types is defined as follows:

7.1. Definition
1. t, dir, file, natnum, char®*, € T;
2.0,0€T=>(apP)eT.

The types dir and file are self-explanatory, ¢ is the type truth value — i.e., the
type of formulae —, natnum is the type of natural numbers and char® stands for
character strings. (a ) is the type of functions from objects of type 3 to objects

22 Cf. definition 5.4.

?3 The language and its semantics will be very similar to the one given in Groe-
nendijk and Stokhof (1991) with some modifications required by the typing.
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of type a. The typed first order language based on the above set T is defined as
follows:

7.2. Definition
1. L(®*) € (LC,,, Con, Var, Expr);
2. LCps & {(,), =, A, 3};
3. Con & U, er Cony;
a. Cony def i

Con;,. e {root, Lgi};

o

Congj, < {tty, mail, Lgie};

g p
[=9
1]
-

Connatnum filey = {write_permission};

Con, char* filey def {content};
def (4.
Co“((cha.r’ char®y char’y = {~kh
4. Var €', op Var® U, ¢p Varl;
a. Var’; = {HOME,CWD, diry,...};
b. Varg;, = {KBD,SCREEN,filey,...};

def
c. Vard oo (WRITECHECK, EXISTCHECK, .. .};

d. Vary = {z.c:z € Varg Ac € Con{,p };

A R

Expr &f U, et Expr,;

Con, U Vary C Expr,;

® € Expr(, gy,n € Exprg = ®(n) € Expr,;
n,¢ € Expr, = n = ( € Expr,;

®, ¥ € Expr, = —(®),(® A ¥) € Expr,;

. & € Expr,, ¢ € Var® = 3¢.® € Expr,.

S©wNo

1

The constants and simple variables of the language serve to name the elements of
the machine states — i.e., files, directories, natural numbers and character strings
— in accordance with our requirements. Our examples of special variables are
‘HOME’ for the user’s home directory; ‘CWD’ for the current working directory;
‘KBD’ for the current keyboard input file ; ‘SCREEN’ for the current screen
output file. ‘root’, ‘mail’ and ‘tty’ are special files and directories. The use of the
remaining constants and simple variables should be obvious from their semantics
that we specify later on. The functional constants are again self-explanatory,
except for = which is the symbol of concatenation. The denotation of 27y is
the concatenation of (the strings) z and y. We usually omit it, and indicate
concatenation by mere juxtaposition. Var® is the set of complex variables. The
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value of a complex variable depends on its components. The operator ‘.’ is similar
to those operators of programming languages which select a particular member
of a structure. We can think of unary name functions as selectors of members of
such structures. We stipulate that

z.c € Var® = z.c = c(z).

That is, the values of name functions applied to variables can be automatically
referred to by complex variables. For example, the content of the file file can be
referred to either as ‘content(file)’ or ‘file.content’. The operator ‘.’ associates to
the left (i.e., z.c.d = (z.c).d). Apart from ‘.” and *~’, the language itself is given
by the standard construction rules for expressions of type 7 in a TDFOLE. In
what follows we will be especially interested in expressions of type t%4.

We need certain further operators defined in terms of the above:

7.3. Definition
1. (8V )L (=& A-0);
2. (& = ¥) & ~(& A -0);

3. 1(®) & ~(~(®)).

The definition of V and — is standard, whereas ‘!’ is a unary logical sentential
operator, i.e., it takes formulae into formulae.?®

The semantic value of the well-formed expressions of the language in a machine
state ms is produced via the function [-]™*. First we define a function D that
assigns semantic domains to types, i.e., it specifies which kinds of objects serve as
the denotation of expressions given the set of machine states?:

7.4. Definition

1. D(¢) & P(MS);
D(file) ¥ {u:t7(u) € Shie};
D(dir) def {u:tr(u) € Zair };
D(natnum) & N;
D(char") 4! Char;
D({a f)) = D(B) = D(a).

D ok w N

That is, the denotation of a formula is a set of machine states, whereas names of
files, directories, natural numbers and character strings evaluate to elements of the

24 In what follows, we will refer to expressions of type ¢ as formulae.
25 This is Groenendijk and Stokhof’s closure operator o.
26 Cf. definitions 4.1 and 4.2.
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appropriate type of the universe — e.g., a file name evaluates to a node of type
file of the underlying tree of the tdag — whereas functional expressions evaluate
to functions of the appropriate type.

Now we are ready to define the semantics of the well formed expressions of the
language L(P%). First we give the definition of expressions other than formulae:?”

7.5. Definition 49

c € Con = [] = p(c);

z € Var® = [z] 4 v(z);

z.c € Var® = [z.c] def [cl([=]);

[EXISTCHECK] & n € 2;

[root] “oe dom(tr);
[-Ldir]] déf 1e dom(tT);
[Laie] € 11 € dom(tr);

def
[Lcharr] = 111 € dom(t7);

[write_permission] € F — 2, where F' C dom(tr) such that ¢7[F] =
Zile-

[

©o NS U W

Thus the semantic values of constants and simple variables are produced by the
interpretation and valuation functions, respectively. The values of complex vari-
ables are determined as was seen before. The remaining clauses can be regarded
as constraints on v and p. ‘EXISTCHECK’ is a variable that can only be set to
0 or 1 (the same holds for ‘WRITECHECK"); ‘root’ has to denote the root of the
TDAG. The name constants will represent ‘immutable’ objects in the machine.
Some of them (especially ‘mail’ and ‘tty’) will help us avoid complications in con-
nection with programs that do not change a machine state under the standard
interpretation (since normally we are only interested in their side effects): we con-
ceive of them as files that can grow indefinitely as strings are concatenated to their
content (when mail is sent or character strings are displayed, respectively). L

27 We assume that
Vzq4.[z]*™ = La, where a € T\ {t}

i.e., the denotation of all well-formed expressions except for formulae in the
error state is the bottom element of the appropriate type, as this will not
influence what follows in any way. The definition below applies to all other
cases. We will drop the superscript ‘ms’ and the type subscripts when this

gives rise to no misunderstanding. v[X] stands for the range of the function
v when constrained to the set X.
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denotes the bottom element of type 7; these are ‘degenerate’ objects such as non-
existent files; their use will be explained later on. ‘write_permission’ is a function
from tree addresses to 0 or 1, thus relating a tree address of type file to its write
permission.?®

The semantic value of formulae in a machine state will be the set of machine
states that can result after the formula has been processed. Thus we specify the
meanings as sets of ordered pairs of machine states. The definition runs as follows:

7.6. Definition
. V® € Expr,.(Lwms, Lms) € [2];
. {ms;ms,;) € [T] 4 ms; = mss;
(ms;, ms;) € [t1 =12] 4 ms; = msy A [t ] = [to]™;
. (ms;,ms;) € [~®] 4 ms; = ms; A —=Jmss.(ms;, ms3) € [®];
(ms;,ms;) € [@ A ¥] 4 Ims;.(ms;, ms;) € [@] A (mss,ms;) € [¥];
. {ms;, ms,) € [3z.9] o tdag, = tdag, A p1 = p2A
A 3ms;.(tdag, = tdag; A p3 = p1 A vs[z]v; A (ms3, ms,) € [2]).

—

= IR T NI R X

Clause 1 states that the error state verifies every formula and no formula can
recover from it. The formula T denotes the diagonal relation on the set MS,
i.e., it is always true without any dynamic effects. The remaining clauses are the
standard ones for DPL, though clause 6 looks a bit more complicated, but this is
the only clause introducing dynamic effects, and it simply says that we are only
interested in changes of the valuation function®® if this leads to a valuation that
can serve as an input to the embedded formula. This justifies what we said above,
namely that the denotation of a formula in a machine state is a set of valuations.

Now it is easy to compute the semantic clauses for the defined operators:

7.7 Facts
1. (ms;, ms;) € [2V V] &
ms; = ms; A 3ms;z.{ms;, ms;) € [®] V (ms;, ms3) € [¥];
2. (ms;,ms;) € [@ - ¥] & ms; = ms; A Vmsz.(ms;,ms3) € [@] =
Ims4.(mss, msy) € [¥];

3. (ms;, ms;) € ['®] € ms; = ms; A Ims;.(ms;, ms;) € [&];

28 We are making unforgivable simplifications here. Among others, we simply
ignore the difference between character files and special files (such as character
devices); also, we ignore other types of permissions altogether (normally the
permissions of a file are encoded in four octal digits in the file system).

29 y;[z]v, means that the two valuations are the same except perhaps for the
value they assign to z.
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As for the first two definitions, there is little to say. In the case of clause 3. it
should be now obvious why Groenendijk and Stokhof call it the closure operator:
it closes off any dynamic effects a formula may have had. Now we have a DFOLE
that has enough expressive power to describe relations between machine states.
We will use this language to specify the semantics of programs. But we have to face
two further problems. The denotation of a formula is a partial relation, i.e., it is
neither functional nor complete. But we think of programs as total functions from
machine states to machine states — i.e., programs are defined everywhere, and
they are deterministic. This means that not every formula of the above language
is appropriate as a translation of a program. To single out the class that we
need, we will introduce a representation for the formulae and impose the relevant

constraints on this representation, which is basically a shorthand for the formulae
of L(Ps),

8. Program Specifications

We will take the formulae that represent the translations of our programs
apart and give them a representation in terms of their parts. The sentences of
this representation will be the ones of L(P9) but we will not use all the power of
this language. But now we will think about this language as an ordinary typed
first order language with equality with its standard semantics. Two sentences of
this new representation will play a key role in specifying programs. The first one,
which we will call the precondition (PC) of the program, will contain the input
conditions for the execution of a program; the other, called the maximal change
(MC), specifies its output conditions. The intended interpretation is as follows:
a formula ¢ is applicable to a machine state ms — i.e., ms € dom([¢]) — if and
only if the machine state satisfies all sentences in the program’s PC,3° and if a
program is not applicable to a machine state, we will take it to have no effect.?!
This is basically the same behaviour as that of standard shells, where an error
message is issued in such a situation, but the machine state is not affected. The
only way a program can lead to the error state is by leading out of the set of
machine states, e.g., by removing one of the objects required by definition 4.1.
The maximal change brought about by the program is that sentences in the MC
of the program are satisfied by the new machine state, and all other sentences not

30 We take this to mean that all formulae in this component are satisfied by the

machine state under some appropriate first-order definition, i.e., ms T’ Py

Vy € I''ms = «.

31 We do that in order to get complete functions in accordance with the re-
quirements of definition 6.2. The general idea is that we explicitly list the
presuppositions imposed by a program on the input machine states.
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affected by MC retain their truth value.®?

In actual fact, program specifications will be more complex. First, the PC will
not be checked against the initial machine state directly, but a modified machine
state, in which some variables are assigned local values for the execution of the
program. So each program specification will contain a component describing a
modification of the valuation of the initial machine state. We will call this com-
ponent the local environment (LENV') of the program. The role of LENV is that
we do not expect the input machine state to verify it, nor do we want it to live on
in the output machine state, unless as a consequence of some property of the MC
in the program specification. Second, since MC is just a sentence in a FOLE, we
have to keep a separate component describing the dynamic aspect of the change
of state effected by the program, i.e., the list of those variables the semantic value
of which may change from the input state to the output state (through changes
in the valuation). We will call this component the environment change (ENVC)
that the program can effect.

So program specifications will be quadruples of the form
(LENV; PC; MC; ENVC),

where LENV € Var — (Var U Con U {*}) (where ‘s’ represents the undefined
funcion value). We will use the notation ms + LENV to refer to the modified
machine state which differs from ‘ms’ in its valuation only, and

* # €_= LENV(I) i [x]ms+LENV £ [E]ms_

On the other hand, ENVC C Var. As a matter of course, if a variable is in ENVC
then, even if LENV assigns it a local value, its old value is not restored after the
computation.

The component called MC does not use the full force of our language L(P®).
This is due to the fact that the operation of a program is to be deterministic.
Therefore, a sentence in MC does not contain negation: there may be several ways
of falsifying a formula. (In this way, we also exclude conditionals and disjunctions,
which also lead to non-determinism, because they are defined in terms of negation.)
Another problematic type of sentence in our FOLE is equality: there are two ways
of verifying the equality of two variables, namely, the valuation of either one (or
both) can be modified in order to make their values identical. Accordingly, we will
stipulate that at most one variable on either side of an equality is in ENVC, and
all variables of ENVC appear in some equality — otherwise we could change the
machine state arbitrarily with respect to the variables in ENVC but not in MC.

32 Except for those changes that MC entails, of course.
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This way, an equality in the MC will correspond uniquely to a change of machine
state (if a change is to be effected at all).?*

We will refer to the language of MC as L(™°) and the language of PC as
L), We now give the formal definitions for the above concepts and a function
[]: PS +~ (MS — MS), which interprets the above quadruples:

8.1. Deﬁnitign
1. L(me) aef (LC(me), Con, Var, Expric),

where LC(mc) = LCps \ {~}; otherwise it follows definition 7.8;

As we have mentioned above, there are two additional constraints on sen-
tences in L(™), namely, at most one variable on either side of an equality

is in ENVC and every variable of ENVC appears in some equality.

3. PS %' (LENV; PC; MC; ENVC),

where PC C Form, LENV C Var —+ (Var U Con U {*}), MC C Formp,
and ENVC C Var;
4. Let ms; € MS, and ps = (lenv; pc; mc;enve) € PS. Then

(ms;, ms,) € [ps] P

(a) ms; + lenv = pc A ms; |= mc A ms; [enve|ms,; or

(b) ms; + lenv = pc A ms; = ms;

The notation ms; [envc|ms; is a shorthand for ‘the valuations of ms; and
ms, differ at most in the values that they assign to the variables in envc’.

As we said before, this ordered quadruple encodes some local assumptions (LENV),
the presuppositional content of the program (PC), and the effected change (MC
and ENVC). How exactly this is done is shown in the next section, using some ex-
amples. As we mentioned above, we take these constructions to be abbreviations
for sentences of the language L(P®), and we spell out the corresponding formu-
lae of the above language as illustrations in some cases. Officially however the
abbreviation reads as follows:**

33 If a variable £ € ENVC did not occur in an equality within MC, but another
sub-formula, say, F(z), then we would face non-determinism again: P(z) can
be verified in as many ways as there are possible values of z that make P(z)
true.

34 The operator FV assigns to an expression the set of free variables it contains.
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8.2. Definition
(LENV; PC; MC; ENVC) &' ~4 V ¢, where
=\(3z1,...,2n.LENV' A PC)A
AJysern ym((321se. . , 25 LENV! AMC)),
with {z1,...,2,} = dom(LENV), {y,... Um} = ENVC, {z1,..., 2} =
dom(LENV) \ ENVC, and

LENV' = ‘z; = LENV(z3) A ... Az, = LENV(z,)".

The above expression expresses exactly what we have described in this section.
First we check the precondition under the local changes — the closure operator
here serves to close off dynamic effects of the first conjunct — then we reassign the
variables of ENVC and perform the checking again under the modified valuation
and close off unwanted dynamic effects. The purpose of using the set LENV\ENVC
in the translation is to avoid unwanted reassignment to the variables in ENVC. The
first — negated — disjunct serves to achieve the effect of totalising the relation.
It is easy to see that either a machine state satisfies the precondition, in which
case it will be in the domain of the formula due to the second disjunct, or it does
not, in which case it will be due the first disjunct that the denotation contains
an ordered pair consisting of this machine state. Thus we have a total functional
expression, exactly as we wanted. It is also easy to see that the denotation of
program specifications under [-] and the TDFOLE formulae under [-] will be the
same. But we still use our quadruples for the sake of perspicuity.

8.1. Some Examples

Now we are ready to look at a few examples. As a matter of course, we will
make gross simplifications again to avoid complications. We will also drop type
subscripts on variables when they are obvious.

8.3. Example
71(rm file) 4 (0;
(EXISTCHECK =1 — file # 1) A
(WRITECHECK = 1 — file.write_permission = 1);
file = 1;
{file}).

This definition says the following. First, we assume no changes for the local envi-
ronment. Second, a machine state satisfies the input condition of this program if
and only if the value of file — i.e., the first argument — is an existing file (if EX-
ISTCHECK is set to 1), and the user has write permission to it (if WRITECHECK
is set to 1). The maximal change that the program effects is that the file’s value
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is the non-existent file in the output state (Lgie denotes non-existent files, and file
is the only member of the environment change).

To show how the mechanism works, we spell out this formula in L(P*):

8.4. Example
I(EXISTCHECK = 1 — ~(file = L))A
(WRITECHECK = 1 — file.write_permission = 1))A
Jfile[!(file = 1)]

By calculating the semantics of this formula according to the rules given in def-
inition 7.6, it is easy to see that it expresses exactly the conditions on pairs of
machine states spelt out above. The closure operators are vacuous in this case,
but they will be needed later on, when LENV will not be empty, to close off dy-
namic effects, as we explained above. As the mechanism should be obvious, we
do not give these translations later except when we want to illustrate some point
explicitly.

8.5. Example
T1(cat file) « (0;
file # L ASCREEN # 1;
SCREEN.content = SCREEN.content ™ file.content;
{SCREEN.content});

This example works as follows. We assume no local changes to the environment;
the file referred to by the argument as well as the file that the variable SCREEN
refers to must exist; the content of file must be concatenated at the end of the
content of the stream referred to by the SCREEN variable (normally, the file asso-
ciated with the user’s screen, i.e., tty). Finally, at most the content of this stream
will be different from the input state to the output state, as the last component
of the program specification shows. Now, in actual fact, the command cat only
affects the state of the machine if the content of its output file is stored on disk.
The user’s screen is usually not such a file. Nevertheless, for the sake of uniformity,
we consider it as if it contained the concatenation of everything that has appeared
on the screen before.

8.6. Example

r1(cc file) = ({{OUTPUTFILE, a.out)};
file # 1;
OUTPUTFILE.content = cc(file.content);
{OUTPUTFILE.content}).

This is our first example containing a non-empty LENV component, which locally
assigns the value a.out to the variable OUTPUTFILE. As we know, this is the
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default name of the output of the program cc (the C compiler). (The symbol
‘a.out’ is actually meant to be a variable that evaluates to the file named that
way in the directory structure.) So one of the uses of LENV will be to assign
default values to variables in analogous cases. The precondition says that the
input file has to exist, and the change effected is to store the compiled version of
the source program to OUTPUTFILE. Note that cc in the MC component is the
actual C compiler, invoked by the shell. It is not to be confused with cc, which
introduces the command line that the shell processes. The shell looks up cc in its
lexicon and acts accordingly, whereas it simply passes cc to the operating system
with the appropriate parameters. So, in an actual implementation, the shell will
perform the following translation:

cc file = cc -0 a.out file.

As here is the first case with a non-empty LENV, we will give the DFOLE
translation again:

8.7. Example
(3OUTPUTFILE[OUTPUTFILE = a.out] A ~(file = L))A
JOUTPUTFILE.content
['3OUTPUTFILE
[OUTPUTFILE = a.out]A
OUTPUTFILE.content = cc(file.content))

Here again we can calculate the semantic value of the DFOLE formula to verify
that it coincides with the intended interpretation of our quadruple. Furthermore,
we can now see how the closure operator closes off unwanted dynamic effects.

Note that the output stream SCREEN in the example 8.5 also has a default
value (namely, tty). The two different treatments of SCREEN vs. OUTPUTFILE
in examples 8.5-8.6 reflect a distinction that we intend to make between two types
of default values. The first type, called deictically available defaults (DAD), are
similar to here and now in natural languages. The default value of SCREEN
belongs to this type. Similar default values include KBD (the user’s keyboard
is the default value for the current input stream), HOME (defaults to the user’s
home directory) etc. The other type is called non-deictically available defaults
(NAD), which contain all the other default values (for example, the default name
of the output file produced by the C compiler in the above example). These are
determined by command names lexically. In this respect (but only in this respect)
they are similar to lexically determined properties of missing arguments in natural
language. For example, the direct object of the verb eat in I am eating has the
default property ‘food’, which can be overridden by an explicit direct object, as in
I am eating sand. On the other hand, the optional ‘source’ argument of the verb
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leave as in He left defaults to ‘here’, a deictically available default, and can also
be overridden by an explicit argument, as in He left Los Angeles. The different
treatments of DAD and NAD will allow us to make a similar distinction in our
shell language.

9. Putting Command Lines Together

So far, we presented the language of program specifications, which serve as the

interpretation of command lines (cml, cf. definition 6.2.9). That is, [cml] o

[71(cml)]™s. We have also seen the objects denoted by arguments. What remains
to be done is to explain how other parameters, i.e., flags and options are combined
with the lexical program specifications.

To give specifications for these, we need a richer, type theoretical language
L) The set of types remains the same as in the case of L(P*)3% The language
itself is the same except that we introduce a new logical constant A that will serve
to construct functions and we now allow application to work in both directions.
Further we allow an infinite set of simple variables in all types that we do not
indicate explicitly, as they are not excluded by the definition of L(P*). The following
definition only gives the new clauses:3®

9.1. Definition
1. L(spec) def (LCspec, Con, Var, Expr);
2. LCspec = LCps U {A};
7. ® € Expr(, gy,n € Exprg = ®(n),(n)® € Expr,;
11. ® € Expr,,{ € Varg = A{.® € Expr, 4.

Since the set of types is the same, the function D is not altered, either,>” and
the semantics of the expressions present already in L(P* is also unchanged,3® so
we only give the new clauses of the definition for the interpretation function [-].

9.2. Definition ¥
L. [®a y(18)] = [(18)®(a ] = [21([n]);
2. [AE.B] = {(1,¢) € D(B) x D(a): ¢ = [2]22, }.

The semantic domains agree with the requirements of definition 6.2. The

35 Cf. definition 7.1.

36 For the remaining clauses cf. definition 7.2.
37 Cf. definition 7.4.

3% Cf. definitions 7.5 and 7.6.
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semantics of compound expressions is given by functional application and the -
operator corresponds to function abstraction.®®

In what follows, we will be interested in the semantics of command lines
in terms of their constituents, i.e., the command names and the parameters.4°
Again, we assume that there is a translation function 7 that works pointwise, i.e.,
it translates the expressions of the language L™ into expressions of the language
L(Pec), Tt is easy to show that [A6.¥(n)] = [¥[¢/n]]. That is, carrying out S-
conversion is licensed by the semantics. Further, we will still represent program
specifications by our quadruples and use four functions — ‘lenv’, ‘pc’, ‘mc’ and
‘envc’ — to refer to its components which we did not introduce into our language
explicitely to avoid complications.

As we said earlier, the denotation of a command name is looked up in the
lexicon associated with the shell. For the sake of simplicity, we are assuming that
the lexicon is a static list of specifications rather than a dynamic database (i.e., we
do not consider the possibility of lexical rules). Therefore, the specification of an n-
argument command name (cmy, ) as looked up in the lexicon is a lambda-expression
of the form Az; ... \z,.PS.*! As a consequence, we cannot account, for the time
- being, with the mechanisms governing optional arguments (and the deictically
available defaults associated with them). For example, the three versions of cat
(with no command-line argument, with one argument and with two arguments)
must be distinguished as if they were three different command names (catp, cat,
and cat,, respectively):

9.3. Examples

1. 7(caty) « (0;
KBD # 1 A SCREEN # 1;

3% v:x/u is the same function as v, except that it assigns u to z, i.e.,:

_ def [ u fz=1y;
vizjuly) = {U(y) elsewhere.

[]f’;‘r /u) 18 the interpretation function associated with a machine state under
the modified valuation. ¥[{/n] is the expression that we get by -conversion,
i.e., by substituting n for all free occurences of ¢ in .

9 As we mentioned earlier, we will ignore certain expressions, such as opr’s.
But it is easy to see what the appropriate type for those specifications would
be.

41 Again, subscripts on variables and constants indicating their type will be
dropped when it is obvious from the context.
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SCREEN.conent = SCREEN.content™KBD.content);
{SCREEN.content});

2. 7(cat,) gs Az gite(0;
Az # L ASCREEN # L;
SCREEN.content = SCREEN.content™ z.content;
{SCREEN.content});

3. ‘r(ca.tg) of AZ file )\yf,;fe.(ﬂ;
N2 TNRP¥ET;
y.content = y.content™ z.content;
{y.content});

Assuming that the translation of a file name is the file name itself, the full con-
struction consisting of cat; and the file name file will get the translation shown
in our earlier example 8.5.

It is easy to see what the lexical rules will do when they will exist: They will
abstract over variables with deictically available default values (such as KBD or
SCREEN), thereby converting them into obligatory arguments. Which variable
must correspond to the first, second and third argument place is determined by
lexical principles.*? Alternatively, we could assume that the addition of optional
arguments is a syntactic operation accompanied with a semantic operation working
in parallel. To do that, we have to assume that the set DAD of deictically available
defaults has two subsets, corresponding to the two possible non-vocative arguments
of a command name (cf. footnote 42 above):

DAD = DAD, UDAD,

(the subsets need not be disjoint). For example, variables with deictically avail-
able default values corresponding to ‘here’, ‘now’, ‘me’ and ‘input’ (e.g., HOME,
CWD, HOST, KBD) are typically in DAD;; variables that default to ‘output’
(e.g., SCREEN, PRINTER) are in DAD;. Moreover, we also have to stipulate
that exactly one variable in each of the two subsets occurs in the program specifi-
cation of the command. If these conditions are satisfied, then we can interpret the
addition of the first optional argument as replacing that member of DAD; which

4?2 We assume that command names should have at most three argument places
as a rule, as is the usual situation in natural languages. However, the first
argument (the ‘subject’, so to say) is always the operating system itself, since
commands are in the imperative mood. So an implicit ‘subject’ in the ‘voca-
tive’ case is to be assumed in front of each command. We also believe that
argument places should be associated with certain types of roles in a system-
atic way, as is the case with the so-called thematic roles in natural languages.
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figures in the program specification, and the second optional argument overriding
the relevant member of DAD,. Note that the systematic association of argument
places with role types (either lexically or through the syntax) is a requirement in
terms of our interpretation of the Principle of Compositionality.

Option letters do something very similar to the lexical rules informally men-
tioned above, except that they affect non-deictically available defaults. For exam-
ple, the option letter -o used with the command name cc is used to introduce the
output file name, thus overriding the default value a.out. However, the way such
an option letter operates is different from what we outlined in connection with
lexical rules. Instead of just abstracting over a variable name, it abstracts over
the value assigned to a variable in the LENV (local environment) component of
the program specification:

9.4. Example
7(—o0) - M. Az i E[lenv(§) /lenv(§): OUTPUTFILE/z].

That is, the option letter -o will add an argument place to the command line that
it is attached to, and modify the LENV of the corresponding program specification
in such a way that it assigns the newly introduced lambda-variable to the variable
QUTPUTFILE (we use the same notation as for the modification of valuations in
the semantics, cf. footnote 39). Therefore, the semantics of -o is entirely uniform:
supplying an option introduced with -o will be simply idle if the original program
specification does not assign a value to OUTPUTFILE, as expected, whereas it
will override the non-deictically available default otherwise.*® Accordingly, the
denotation that we assign to a command line of the form cc -o objfile sourcefile
will be as follows:**

9.5. Example

r(cc ~o objfile sourcefile) = ({{OUTPUTFILE, objfile)};
sourcefile # L;
OUTPUTFILE content = cc(sourcefile. content)
{OUTPUTFILE.content}).

Most importantly, as can be seen in the above examples, the difference be-
tween the behaviour of optional arguments vs. options is reflected by the shape

43 As a matter of fact, we could also say that the shell issues an error mes-
sage instead of passing the command to the operating system. In natural
languages, using an optional parameter when it is not appropriate gives rise
to an anomaly. The procedure that we are taking here is just a matter of
convenience. Note, however, that the eventual anomaly would be semantic
rather than syntactic.

44 Cf. 8.6 and 9.4
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of the program specifications that they yield. Lexical rules replace variables with
lambda-variables, whereas options just rebind them in the local environment. As
a consequence, options leave open the possibility of further rebinding, so, e.g., the
following equivalence will hold:

cc -o objfile; -o objfile; = cc -o objfile;.

Lexical rules, on the other hand, make it impossible to rebind the affected variables
in any way (e.g., by using options).

Flags () are of type (t t). Just like options, they modify the LENV com-
ponent, but they determine the value that they assign to variables in the local
environment (rather than taking an argument to that effect). For example, the
flag -f flag forces both WRITECHECK and EXISTCHECK to be evaluated to 0
in the local environment:

9.6. Example

7(-£) = A £[lenv(€)/((lenv(€): WRITECHECK/0): EXISTCHECK/0)].

This is an expression of the appropriate type, i.e., it yields a program specification
when applied to a program specification, as in the following example:*3

9.7. Example

r(rm file -£) < ({(WRITECHECK, 0), (EXISTCHECK, 0)};

(EXISTCHECK =1 — file # 1) A

(WRITECHECK = 1 — file.write_permission = 1);
Blé =714
{file}).

Obviously, the effect of the flag -f is that the tests on the existence of the file to
be removed and the write permission for it will always succeed.

10. Conclusions

The intuitive non-compositionality of the Unix command language is due to the
fact that, in every command line, the interpretation of the parameters is the ‘in-
ternal affair’ of the program corresponding to the command name. Even if the
meaning of a command line is some function of the meanings of its constituents,
one has the clear intuition that not all functions yield equally ‘compositional’ se-
mantics. If we allow functions defined pointwise, then the traditional principle
of compositionality becomes vacuous. On the other hand, it is difficult to make

45 Cf. the examples 8.3 and 9.6.
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sense of the concept of ‘more natural’ or ‘simpler’ functions from the mathematical
point of view. Accordingly, there are no natural means to limit the action that
a computer program can perform. What we can do, though, and what we have
done in this paper, is interpreting the constituents of command lines as well as
their ways of combination in a uniform manner. In this way, the interpretation
of command lines is compositional in the sense that it may not be construction
specific, irrespective of what the actual program carried out by the machine will
do.

How is the behaviour of our compositional Unix shell different from a tra-
ditional, non-compositional one? Instead of pre-defining a set of flags, option
letters, optional arguments ete. for each command name, we could have ‘manual
pages’ for flags, option letters and the like, which would describe what they do in
any command line. If certain combinations of commands and parameters do not
make sense, they will qualify as semantic anomalies rather than syntactic errors,
just like in natural languages. (Although, in actual fact, we have treated certain
anomalies as just ineffective in the above.) For example, I knew the answer with a
knife is anomalous because the verb know does not license an instrument ‘option’
just the same as the option in cat -file auxfile does not make sense because
the program cat does not use any auxiliary (command or expression) file. Listing
what arguments, options etc. do make sense in combination with cat is as absurd
as it would be to list all the adjuncts that make sense with the verb know in a
dictionary of English. '

By the same token, our treatment of Unix commands also has implications
as to the ‘manual pages’ of natural-language predicates, i.e., their syntactic and
semantic description. Even though the complexity of their meanings and the
multitude of the types of construction that they occur in cannot be compared
to the simplified command language that we have examined in this paper, the
concept of compositionality that we have forwarded here has a consequence for
their study. Namely, a natural-language predicate used in two different ways must
be attributed a single meaning unless we are entirely certain that homonymy or
two different constructions are responsible for the two different uses.
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